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Abstract-—An asymptotic theory for dynamic analysis of doubly curved laminated shells is for-
mulated within the framework of three-dimensional elasticity. Multiple time scales are introduced
in the formulation so that the secular terms can be eliminated in obtaining a uniform expansion
leading to valid asymptotic solutions. By means of reformulation and asymptotic expansions the
basic three-dimensional equations are decomposed into recursive sets of equations that can be
integrated in succession. The classical laminated shell theory (CST) is derived as a leading-order
approximation to the three-dimensional theory. Modifications to the leading-order approximation
are obtained systematically by considering the solvability conditions of the higher-order equations.
The essential feature of the theory is that an accurate elasticity solution can be determined hier-
archically by solving the CST equations in a consistent way without treating the layers individually.
Illustrative examples are given to demonstrate the performance of the theory. Copyright ¢. 1996
Elsevier Science Ltd.

1. INTRODUCTION

In the literature three-dimensional analyses of doubly curved laminated shells are scarce.
This is mainly due to the inherent complexity of the basic three-dimensional equations in
curvilinear coordinates. Recently, a number of approximate elasticity solutions for this
type of shells were obtained. The solutions by Bhimaraddi (1991, 1993) and Fan and Zhang
(1992) were made possible by dividing the individual layers into sublayers so that the thin
shell assumptions may be adopted to approximate the governing equations with variable
coefficients by ones with constant coeflicients for each sublayer. This discrete-layer approach
is clear in formulation, however, it may not be advantageous in computation because of
the necessity of solving a large system of equations resulting from imposing the interfacial
continuity conditions. Treatment of the actual laminate system itself, layer by layer, is
cumbersome. Artificially dividing the layers further into sublayers is, of course, something
to be avoided. Analysis of the problem by solving the partial differential equations with
variable coefficients was made by Huang and Tauchert (1992) and Huang (1995) using the
Forbenius method. The power series solution is approximate in nature, and the errors are
difficult to assess in general.

The displacement-based models in which the formulation is based on certain kinematic
assumptions on the through-thickness variations of the displacements, do not treat the
system layer by layer. Among them, the classical laminated shell theory (CST), the first-
order (FSDT) and higher-order shear deformation theories (HSDT) for doubly curved
laminated shells are well known (Reddy, 1984 ; Reddy and Liu, 1985 Khdeir ef al., 1989;
Librescu er al., 1989 Leissa and Qatu, 1991). These models provide a simple way for
determining the basic structural response of the laminated shells, but are generally inad-
equate in predicting the interlaminar stresses because of their inability to satisfy the inter-
facial traction continuity requirement. The validity of the solutions thus obtained are
normally checked against the analytic solutions for benchmark problems. Once the solutions
are found to be unreliable, improvements cannot be made without entire reformulation.
Assessments of various models for multilayered composite shells can be found in Kapania
(1989) and Noor and Burton (1990).
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In this paper an asymptotic theory for dynamic analysis of doubly curved shells of
laminated construction is presented. The laminated shell will be regarded as a heterogeneous
shell with nonhomogeneous material properties in the thickness direction. Thus there is no
need to consider the system layer by layer nor to treat the interfacial continuity conditions
in particular. Studies of the dynamic analysis of nonhomogeneous plates by means of
asymptotic expansions were presented long ago by Widera (1970) and Johnson and Widera
(1971). In their formulation a straightforward expansion using a single time variable
was used and certain assumptions regarding the material compliances were made. The
asymptotic equations were derived only up to the second order, and they are in rather
complicated forms even in the case of flat homogeneous plates. No numerical results were
given to demonstrate the applicability of the theory. In addition, various refined shell
theories for the static problems were presented by applying the methods of asymptotic
integration (Agalovian, 1966 ; Logan and Widera, 1980 ; Widera and Logan, 1980). Asymp-
totic analysis for dynamic response of laminated shells is not just a matter of applying the
standard perturbation method. This will lead to not only equations too cumbersome to be
useful but also nonuniform expansions containing secular terms. It will be shown herein
that a straightforward expansion using only a single time scale will #ot result in a valid
asymptotic solution, whereas uniform expansions can be obtained using the method of
multiple scales (Nayfeh, 1981).

This paper is a continuation of the recent study of asymptotic theories of multilayered
plates and shells (Tarn, 1994 ; Tarn and Wang, 1994; Tarn and Yen, 1995). Dynamic
analysis of doubly curved laminated shells is formulated on the basis of three-dimensional
elasticity. This type of shells is of interest in its own right. Further. by varying the curvature
radii. various types of structures. such as the laminated plate (both curvature radii are
infinitely large), the spherical shell (curvature radii are equal) and the circular cylindrical
shell (one of the curvature radii is infinitely large). are included as special cases. The problem
1s more complicated to deal with because of the geometries and curvatures involved.
Emphasis will be focused on the derivation of a systematic way for determining the higher-
order modifications to a uniformly valid asymptotic solution. With the aid of multiple
scales. solvability conditions of the higher-order equations are clearly derived in obtaining
a uniform expansion free of secular terms. The benchmark free vibration problems will be
solved. The natural frequencies obtained according to various models will be compared to
demonstrate the performance of the asymptotic analysis.

2. BASIC THREE-DIMENSIONAL EQUATIONS

Consider a doubly curved laminated shell as shown in Fig. 1, in which 24 denotes the
thickness of the shell. A set of the orthogonal curvilinear coordinates (x, f, ()} is located on

Rq

Fig. 1. The geometry and coordinate system for the doubly curved shell.
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the middle surface. R, and R, are the radii of curvature to the middle surface, and a, and
ay denote the curvilinear dimensions in the « and f directions, respectively.

The shell of laminate construction is regarded as a nonhomogeneous shell with het-
erogeneity in the thickness direction. The material is considered to be curvilinear aniso-
tropic, having at each point elastic symmetry with respect to the surfaces { = constant. The
stress-strain relations of the material are given by

0'1\ F('|1 Cia Oz 0 0 ('xﬂ (&)

ay Ci2 Can Oz 0 0 €26 &y

o L 3 Cax ¢ 0 0 3 & (1)
Ty B 0 0 0 ¢y 4 0 1 WS i

Tye 0 0 0 Cqs Css 0 IES

oy L Cle Cre Ci6 O 0 ool Uiup)

where 6,. 6. 0., T, Ty Toy and &,. &5, & 7ues Vpoe ap A€ the stress and strain components,
respectively. The laminated system is heterogeneous through the thickness such that the
elastic constants ¢;, = ¢,,() are piecewisely continuous functions of (.

The kinematic relations in terms of the curvilinear coordinates », f and { can be
expressed as

(e, ) & 0 1:7.R, ]
&y 0 Culvp ligRy |
-~ u1 ‘
£ 0 0 -
LT X X § Up 0 (2)
s 0 c.—1 }'x;R/f Cpp J
- N L l/l:
S ( 1R, 0 Gy
L) L (!V/f'.;‘/f [ 0 ]

in which ¢, = ¢/Ca. ¢y = ¢ '¢f. ¢. = (ic
displacement components.
The equations of motion are

o =1+0R. vy =14+0Ry; u,, ug and u; are the

‘o, (o ‘T, 2 ] 3¢ lu,
YA TR T e - + = YRR (3)
Moy Tep T e (RI R, " R.R,) ™ M ap
ffz/{ ("O‘/g (_:T/;: ] 2 3; F:u/f
o Ty P Tl e T o [T = P IS 4)
f o ix ¢ f & R, R/; Rlei A /tl/ip ar
CTy: Oy co: 1 1 2 Vr T OCu
Yp A T Tmy Tttt O:— 50— 5 05 =704y ()
o o * A i i ¢ <R, ng R,R/; R, E R/; # Vaipf &t

We remark that the Lamé parameters are taken to be constants in (2)—(5). This is
appropriate for developable shells. but not for undevelopable shells.

The displacements u,. ug, u. and transverse stresses 7., 7,., o. will be regarded as the
primary ficld variables. Therefore, let us eliminate the membrane stresses g, o5 and T,
from (1)-(5) and express the basic equations in the following form:
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U,
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The membrane stresses can be expressed in terms of the displacements and transverse
stresses as
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g, I 15, u I75 Ci3
oy =\l s {1}‘1' lgs |u; +| a3 j0g, (10
Ug -
Tap loy Iy, o Ci6
where
[y :@@"F'Qﬂaﬁ, 172=Q1661+&6/17 lg) :&am+%aﬁa
Vx yB Vx yﬁ Ya y[f
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Let us consider a set of particular type of boundary conditions specified as follows:
On the lateral surface the transverse load ¢(x, f8, 1) is prescribed,

[t; 7]l =[0 0] on{= x4, (11a)
o; =g p,1) onl=h, (11b)
0. =0 onl= —h (11c)

The edge boundary conditions require that one member of each pair of the following
quantities be satisfied,

0, +HnaT,s =Py, OF U, =10, (12a)
nTs+n,05 =Py, OF Uy =y, (12b)
n]T,;+n2T,9; == [_’3, or u; - ﬂ: N (120)

where p; (i = 1, 2, 3) are applied edge loads: #,, iy and @ are the prescribed edge dis-
placements; n, and n, denote the outward normals at a point along the edge.

3. NONDIMENSIONALIZATION AND MULTIPLE SCALES

A key step in applying asymptotic expansion is to bring out in the formulation a small
perturbation parameter characteristic to the problem. This is accomplished by making the
basic equations dimensionless. To this end, let us define the dimensionless field variables as
follows :

N _F e
 Rh JRh h
u, Uy U;
U= , U= , W=,
J Rh J Rh R
R =% p B
A R v R Ll
g, O'/g lef
O-\' = _’ O-] = ~—’ T.‘(" = _;
e 9 )
Tye Ty o:
T.==2, .=t o =—. (13)
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in which &> = h/R is a small parameter, usually much less than 1. R denotes a characteristic
length of the shell. In the present analysis R is defined as a’/h, where a is the smaller value
of a, and a,. Q stands for a reference elastic modulus.

To provide flexibility in eliminating the secular terms in the asymptotic solution, it is
constructive to introduce in the formulation the dimensionless multiple time scales defined

by
2k
=120 k=012 (14)
R N po

where p, represents a reference mass density.
Upon substituting (13)—(14) in (6)-(10). we obtain the dimensionless equations as
follows:

.. Au . .
w. = —¢ [/ /33]{ }—8313]11‘—}—841340'_.. (15)

r

¢? L &* &? u
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The dimensionless membrane stresses are given by
‘o, ] 77| 77: 773 Cis
ARG I |
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(19)

In view of (15)-(19) containing only even power terms of ¢, we now expand the

displacements and stresses in the form given by

S ze) = fo o+ fi )+ et (v, 2+

(20)

Substituting (20) into (15)~(19) and collecting coefficients of equal powers of &, we

obtain the following sets of equations at various levels.

Order ¢":
V“((J).: = 0‘
U, = —Lowg.
~2
6,0, = —Leug, —Lowg, + 01—,
oo LA
1

A2

F-0): = Lllu(()) +163“"<0» ‘ledum +p> o Wo)s
0T

(21)
(22)

(23)

(24)
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(25)

(26)

@7

(28)

(29)

(30)

(3D

(32)

(33)

(34)

G0y = Lisugey,+Lysw,
Order &:
wiy: = — Ly — 3wy,
u, . = Liug, —Low, +Lsogq),
2 A2
Oy = “Lsum“L7W(1)—LBU\(O)_Lgaz(o.‘f‘Pl ,“(|)+2pl ot 0 U,
ot Ty 0Ty
12 o2
T.1): = L, Uy, + /s W —leo'xm_Llso'x(O) _1646:(0) +p: " Wiy +2p, 57— Wo)s
ot 0ty 01,
Gy = L14“(1) +L15W11) +L160':(0),
Ordere®* (k=2,3,...):
Wiy = _L]“(k—l)—‘133W|k~l)+l34az(k—2)a
Uy, . = Lyug_, —Lowy, + Lyo 1y +Lso o,
Osr.- = — Loy —Lowgy — Loy 1) —Looy 1, — L1002
0° 2
+| o1 T 20w,
61‘5 6'[0 6T|
¢? é? &2
+- 4+l 3 + + U
010 01, 01, 074,y 0 01, ) O |
Oty = LlIu(k)+163w(k)—L126s(k) —Ls6,4_1,— 640:k—1)
2 82
— L5000+ Wy 20— W
5O:(k—2) P> (k) P2 tk—1)
ot 01, 014
0? 0? 0°
+ P2 + +-+ W
P 0t 01y 0T, OTh_, o ot ) O
Gy = Ligugy +Lyswy, +Lie0.4 ),

(35)
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771 773 773 €1a
L,= 781 isz , Lis= isz s Lie =00
791 792 793 C36

The associated dimensionless boundary conditions are

Order&":
[Te) Tzl =[0 0] on z= +1, (36)
G-, = §(x, v, 1) on z=1, 37D
G0, =0 on z=—1. (38)

Along the edges one member of each pair of the following quantities must be satisfied :

M Oyoy Ty =Pis OF Uy, =4 (39)
Ty T 12000y = P2, OT L, =T, (40)
n|0'\-:(0)+n2fv‘.:(()) = p~3, or VV(O) = W, (41)

Ordere* (k=1,2.3,..):

t)
i
=+
—_

[T,\:(k) Tl:(l\')] = [0 O] on > (42)

(43)

]
=
[N
I¥
I+

O-:lk) = 0

Along the edges one member of each pair of the following quantities must be satisfied :

Oy + Ty =0, or uy, =0, (44)
T +Ma0,, =0, or vy =0, (45)
nIGV:(k) +n2‘[\'z(k) = O* or w‘(k) = 0, (46)

—

where § = q/Q¢>. p, = p/Q, il = 2,/ Rh.t = a,,/v/’ﬂ and W = 4,/ R.

4. SUCCESSIVE INTEGRATION AND CST

The asymptotic equations can be integrated with respect to z in succession. The
associated lateral boundary conditions will be satisfied in the course of the integration. As
a result, we obtain at the leading order

Wy = WolX, ¥, To. Ty, - 2), (47)
U, = Uy(X, ¥, Ty, Ty, .. .) —2zDTwyg, (48)
i

fud 6- fd
G0y = ‘_J {Le(uo —VIDTWO) + L7W0} dn+ C')—ZJ J2XCTS —WDTWO) dn, 49)
-1 _1

To
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r=

0':(0>:J [Lll(“0_’IDTWO)"‘i@zWo]d'?*'J‘ (z—n)D[L¢(uy —nD"wy) +L;wo] dn
-1

1

: w2 (7
+ (J P2 dn> — J p1(z—mDuy —nD we)dy.  (50)
—1 —1

oty ot

where wo(x, ¥, To. T1o -0 ) U = [U(X, 1. Tg. Ty ) To(X. 3. 76, Ty, .. )] T represent the dis-
placements on the middle surface and D = [¢, ¢,]. The displacements in (47) and (48) are
of the Kirchhoff-Love’s type in the CST.

Consideration of the boundary conditions follows. The boundary conditions on
z = —1 are satisfied by (49) and (50). After imposing the remaining lateral boundary
conditions (36)—(37) on (49)-(50), we obtain

1 (‘23 1
j {Le(“o—”IDTWO)+L7Wu}d’7: ,f Pl(uo“’?DTWo)d'I~ (51)

-

1 ;‘['6 _1

o)

1

1
J [Ll,(uo—nDT\1'0)+lmwn]drz+J (I —mDIL¢(uy —yD wy) +Low,] dy
1

-1

1 N (‘3:“4 (‘22 1
=q- (f P:dﬂ) ; f’+ﬁf pr(1=mD(ug —yD"wo) . (52)
—1

€Ty CTyJ -1

After a simple manipulation, (51) and (52) can be written explicitly as

uy ¢’ ‘
Kijug+ Ky vg+Kiswe = 1 ———1 - (Wo.i)s (53)
T} CTp
ey &
Ko ug+ Kyatg+Kyawy = 1y T 1 2 (o). (54)
Ty T}
P, & &
Kyjug+ Kiovg + Kaswy = §— Ly —— + 1 ——(Wo oo+ wo ) =Ly — (o + 0,0,
cT; CT otg
(55)

in which

Ki; =K = —B, CV.\,V—(2§16+EI6)E\V\-(366+§12+E66)6\tt
5 ‘A"ll EI- /IIG ’4_:6 -
— B¢ LEN :
_6(‘”+(R‘, + R1 (\+ R\ + R‘ Cy
KZZ = Aﬁé 6,\:\’+2A~26 a.\'.\ +/T22 61‘\’
K:? = K}Z = —élﬁa\'\'\_(éﬁh +§12 +B~66)€\'\'|‘_(B_26 +2B~26)6\"\_1
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K}} = ﬁll (:\1\‘\ \'+(2§16 +21516) a\,\'.\\‘+(2D~l2ﬁ+1566j_2D~66 +1566~)'6\1\’.\'y
— ~ _ B]l 317 B]7 E77
2D, 26) Coppr 33 Cropy — =1é.. — = — 1.,
+( -6+2D._6)(\}\vl+D__(7|\_ll 2<R\ + RJ. vX 2 R\ + RA,- C”
Elé Bl(\ E')(, 26 All 21‘?17 /I77
-2 - s = s
(R‘ TR TR TR)ONT Y +R\,R,.+ R )

1 - U 65 - (I
A, = J @d:. A, = [ -Q_"f”d:. A4, = f Q. d-,
-1 1 ]

S

iz

~l ) " _ N
B, = J QM:d:, B, = J %:d:. B, = [ Q,zdz,
~1 1 1

V2

(=N
Il

Examining the governing equations for displacements in CST (Leissa and Qatu, 1991},
we find that the CST equations are reproduced from (53)—(55) after imposing an assumption
of the thin shell: z/R, « | and z/R; « 1. In the present notation, it implies y, = 1, 7, = 1,
A,=A,=A;=A4,0h B,=B,=8B,=B,/Qh, D,=D,=D,=D,/Qh in which 4,,
B, D, are the so called extension, extension-bending and bending stiffnesses, respectively.
The CST thus has been shown to be a first-order approximation to the three-dimensional
theory. Solutions of (53)—(55) must be supplemented with the edge boundary conditions
(39)-(41) to constitute a well-posed problem. Once u,, v, and w, are determined, the
leading-order displacements are given by (47)—(48), the transverse shear and normal stresses
by (49)—(50), and the membrane stresses by (25).

Carrying on the analysis to order & by integrating (26)—(29) in succession, we readily
obtain

Wiy = Wi (0 Te. e 03 (0,1, 2, T Tye e ) (56)
Uy, =W (X 3. T Ty, ) —2D v + ¢, (0 V. 2 T0. Ty, -2 ) (57)

6,1 = —J:l [Le(uy, =D w )+ Low, Jdy4+-£,(x, 1.2, 70, T4, .. )
+ ﬁ(ro jzl pr(u, —7DTw, )y, (58)

”

G-y = J (L, _']DT“'1)+763”'1]d'I+J (z—mD[Lg(u, _VIDT‘i"l)+L7W|]d”I
i

, o[ - : 8w,
—fux ¥yt T, ) - T3 (z—n)D(u;, —yD w ) dn+ p-dn . (59)
-1

A2
015 J -1 013

where w, and u, represent the modifications to the displacements on the middle surface,
and
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u = [ (60, T, Trs ) 00 (6 1, To, Trs

Sy zt,1,..) = _J Lo, +iez¢31 —L.f, —L130.\-(0)“l~o4‘7:(0))d'l
1

(32W0

fll(X,,V,Z,TO,Tl,...) z
f] = = — (L6¢| +L7¢3] +L863-(0) +L90'2(0)) dn
le(—V,,V’Z,To,‘rl,...) -

2

+

b (x,»,2,70,7y,...) = — ( (L1“(0)+i33W’<0)) dn,

w0

D1 (x,1,2,79, Ty, .. ) :
¢, = { ! o }= f (Liug, +Lso,0—L,g, ) dn.

G21(x, 1,2, 70, Ty, ) 0

62 z B4
— sy dnp—2 d ,
a‘[%J’_|p_¢3l 7] (JAlPZ n)@roar,

Loz 2] )
u )
8~[S N pl 1 '? 87.'0 atl » PI {0) n

Upon imposing the associated lateral boundary conditions (42)—(43) on (58) and (59),
we obtain the CST type equations with nonhomogeneous terms carried over from the

leading-order solution.

u 0?
Kiuy+ Ko +Kyawy = 1107,1 =1 _7(W1.,r)+f11(xaya 1),
0tg 0t
o', é?
Kyuy + Kooy + Kpawy = 1|o"’,’ -1 4:(‘”’1,,\)+f21(x’}", 1),
T T5
8w, 02 Tk
Ky juy + Kyt + Kyawy = =g —— + 1o Wi +wi ) =1 (. +o,)
075 CTh ot;

+f3|(xay~, 1)— 6]/’

6fll(xsy1 1) . afZl(x9y5 1)
P .

(60)

(61)

(62)

The governing equations at the ¢ order are obtained by integrating (31)-(34) in

succession. The resulting equations are

&*u a?
Ku+ Ko+ Kiawy = 110”—,k =1 77(Wk,x)+f1k(x7y7 1),
ct; 014
821)1( 62
Ko vue + Koot + Ky swy = 110,,7., =1 ~ 3 (Wk.,r)+f2k(x’}’, 1),
0Ty 0T}
8w, P 2
K u +Kyv + Kyyw, = — 1, 3 +1;5 _ﬁ(Wk.x\"FWk_y)) -1, —2(“k.x+vk.y)
ot 5 0tg

ofik(x, 3, 1) . Ofu(x, 3, 1)

Sl 1) = 5

in which

(63)

(64)

., (65)
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JalX, ¥,2,70, T4, ) = —J (LI1¢k+i63¢3k_l-‘12fk_Ll3a.r(k-1)_7640:(k~l)_i6562(k-2)) dn

-1

[ mnen) iz L o)
N _ Wi
o 7192 3 an o1, 01, Alpz w-1 4y
TP G : d
P 7W 5
01001, 01, OThy 01, 01 —]p_ o &

= _j (Ledpi+ L. +Lgo 1y +L 100, 2+ Loo.u 1)) dn

-1

=

{flk(xvy»;-,’ TO*‘Elﬂ . )}

Jux,¥,2,70, 71, ..

o [ PE ;
d 0 4
+|iﬁféj1pl¢k rH-ﬁrO@—[l( Jllplu(/‘fn ’7)

SO (L i PO i ued
01001, 07, 0Th_, 01, 014 4|pl 0 dadn ||

OulX, 1,2, 70,715 . ) = —J (Lywgo oy +Lawg_y, _1340:(k-2)) dn,
4]

G1(X,¥,2, T, T15 - - ) =
¢k = {qsl (x bz 1:0 Tl ) = (Lju("'*l)+L4d,\'lk—-l)+L50’s(k‘2)_L2¢3k)d7].
2k\As Vo ls Lo L1y e 0

The accuracy of the asymptotic solution can be roughly estimated by examining the
mathematical order. As the leading-order solution is obtained by truncating all the higher-
order terms beyond &*-order, taking into account the orders in the nondimensionalization,
we find that in the absence of transverse loads it gives the transverse normal stress o;
accurate to O(¢*), the displacements u,, u; and transverse shear stresses 1, 75 accurate to
O(¢’) and the displacement u; and membrane stresses o,, 04, T,; accurate to O(¢%). The
accuracy increases according to the power of ¢? as we carry out the analysis one level higher.

5. SOLVABILITY CONDITIONS

It is well known in asymptotic analysis that the asymptotic solution will not be valid
unless the expansion is uniform and free of secular terms (Nayfeh, 1981). As the governing
equations at various levels are in the same form except for the nonhomogeneous terms
involving lower-order solutions, it is necessary to investigate the solvability conditions
under which the equations possess solutions that are bounded and free of secular terms.

Let us derive the solvability conditions for the ¢**-order equations. To simplify the
notation, we rewrite (63)—(65) in a differential operator form as follows:

Ly (e, v wy) = frelx, y, 1), (66)

Lo (ues v, wi) = (X, 3. 1), (67)

ajhlk(xsys l) _ 5f2k(xay, 1)
ox Oy '

Ly, vpow) = foulx, p, 1) — (68)

Multiplying (66)—(68) respectively by the weighting functions ¢,, ¢, and ¢; (to be
determined in the course of derivation), integrating over the domain of the middle surface
and then we add them together in the following form
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»

@ [Ly (e b wy) =y, p, 1)1 dA +J @[ Lo (U, v wi) —fa(x. v, 1)) dA

v A

v ) Sl 1
+«/M(ﬂ\ } )+Cf-k(\ »h

}dA =0. (69
éx cy

—J (5 |:L3(“A- O Wi =[x, 1)

The differential operation in the integrals of (69) can be transfered from w,. ;. w; to
@1- @1. @ by applying Green’s theorem. After a lengthy but straightforward manipulation,
we arrive at

A

J MkLI(qDl-(p2~(p3)dA+J
4

A

Ul (. @2 p3)dA —J wiLs (g, @2, 05)dA

~

+ | tulLa(@i. Q2. 03)n,+ L@ . @2, ¢3)n,]

r

Y

— @ Lol v wion + Ls(uy, v, win, ] dI]

+ | llo(pr @ 0n +Lo(@) . @2 03)0,]

v

— s [Le(uy v wn + Lo(ue v, win 1dl

+ [ [ Ls(@ i @r. 00+ Lo(@,. 05, @3)n,]
Jr
— @3 [ L vyowi)ne + Lo (g vy wy)n, ] AL

n

: , e S
|:‘Pl./u+<ﬂzf:k+%< (’,]rk + (,; __/}k)JdA =0, (70)

oA

where I denotes the boundary of the domain 4. n, and r, are the components of an outward
normal aton I

If we choose the leading-order solutions for u,, r, and w, as the weighting functions,
the first three domain integrals in (70) vanish. Moreover, with ¢, = ug, ¢, = vy and @; = wy,
it turns out that the operators L, (k =4, 5. 6, 7. 8, 9) are related to the stress resultants
across the thickness by

™1

Ny = ] Owoy's dn = L,(ug.vq,w). n
-1
rl
Nowo = Tom? 41 = Lslug. vy, wy). (72)
J o
rl
Ny = Toro)7'8 dn = Li(uy. vy, wo). (73
Jo1
rl
Ny = G0)7: AN = Lo (uo, o, Wo), (74)
Jo1
6‘M\',\'
Vior = Qo)+ % = Ly(uq, vy, Wo), (75)

cy
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oM,
V_\(u; = Q»(m+ p\_m‘) = Lo(uy.ty.ny). (76)
~ 1
Q\t()) = T\:(()h dl’].. Qr(()» = [' Tr:((])drlﬂ (77)
v -1 Sl
i |
M0 = J Tooidn. Moo, = [ Towo 7 dn. (78)
| Jo

It follows that the boundary integral terms in (70) merely imply the admissible edge
conditions given by (39)—(41) and (44)—(46). The solvability conditions are finally derived
from the last remaining term in (70) as

. o | w0
ug fri+tofau+ “'0( («I\A + (qlfk' 7.’31\) =0. (79

At the leading-order level (79) is identically satisfied. However, at subsequent levels
this imposes an additional condition that has to be satisfied along with the higher-order
CST equations. If one makes a straightforward expansion using a single time scale, then
all terms in f};, />, and f3, are functions of 7, only, completely known from the lower-order
solution, it will have no room to accommodate the solvability condition. This inevitably
leads to inconsistency. As a consequence, the expansion is bound to failure. By constrast,
with the multiple scales, f};, />, and /3, are yet unknown functions of 1, 7,,. .., in addition
to 7,. This provides enough flexibility in determining the dependence of the field variables
upon the scales 7/, 7,.. .. and eliminating the secular terms.

6. APPLICATION TO BENCHMARK PROBLEM

For illustration the asymptotic theory is applied to the free vibration problem of
doubly curved shells. The problems of isotropic homogeneous shells and cross-ply laminated
shells will be considered.

The elastic moduli for orthotropic layers are such that

(Q16) =(Q16); =(Qs¢), =(Qas), = 0. (80)

The boundary conditions on the four edges are of a shear diaphragm type specified by
g,=u;,=u-=0 onx=0 and zx=a,. (81)
oy =u,=u-=0 onff=0 and f=aq (82)

The displacements of various order can be determined by letting

u, = U, cosHixsin Ay ¢cos (T, — ), (83)
v = Vi sin#xcos Ay cos (wt, — ), (84)
Wy = W, sinmx sin iy cos (o1, — ), (85)

in which #i = mnyja,, A = nnja, (m,n=1,2.3....). and w denotes the circular frequency of
the motion. The phase angle ¥ is a function of the time scales 7,, 1-,... but not 1.
Substituting (83)—(85) into (51)—(53), we have the leading-order equations:
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]Ell 1;1: l‘tll UOL 110 0 _]llrﬁ \/Uo

k~:1 l;:z'_s E:} < I/(] = O 11(] _Illﬁ < V() . (86)

ki ki ks lWO I —1 A Lo+ 1, +a2) 1 [ W,
where

1‘:11 :’7’2/4114".2 _66

ks = ki =’Flﬁ(/‘1~1:+Aﬁe)

~ ~ 7~3~ B - ~ - /ill A~12

kix=ky = — |’ B, +mi (Beo+ By + Beo) +1 R + R B

k::: = mﬂ/iac.*‘ﬁ:/q::

~ ~ C 5 5 35 N A~12 4,

kyz=kiy= —| W A(Be+B -+ B ) +7° By> +7 R + R ,

ki =m*Dy, + A (2D + Do + 2D +566)+ﬁ4ﬁ22

+2-7 gl|+§12 +2~‘1 EIZ+BZZ + A‘11+2 112 +/122
m | —— == - :
“\R TR "R TR )T\ R TTRR T R

i) )

Equation (86) is an eigenvalue problem, in which the mass and stiffness matrices are
real and symmetric, hence w, must be real. When the coefficient matrices are positive
definite, w, are positive. Nontrivial solution of (86) exists if the determinant of the coefficient
matrix vanishes.

= (. 87)
1\:31 ‘|”7~71|1w2 ]ET»: +ﬁ111(U: EM*UZO“’( ~2+n‘)112]w2‘

From which three eigenvalues e, (i = 1. 2, 3) that represents the leading-order natural
frequencies for a specific set of values of m and » are obtained.

To make the solution unique, the modal displacements are normalized by imposing
the orthonormality condition:

(Up+e U+ Us+. . ) (Vo+ &V + Vo4 Y (W W, +* W, +. )]

XU+ U +e' Us+. ) (Vo+V 4 Vot Y (Wo+ W, +* W+, )] =1.  (88)
Specifically. the normalization conditions at various levels are
¢'-order: Uj+Vi+W;=1: (89)

gr-order: Uj+Vi+Wi=1.
UUi+ VoV + W W, =0, (90)

et-order: Ug+Vi+ Wi =1
UoUy + VoV + W W, =0,
Ui +2U, U+ Vi+2V Vs + Wi42W, W, =0;. . . etc. 9n

At the ¢"-order level, the normalized eigenvectors corresponding to w,(i = 1, 2, 3) are
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written as [UY V4 W', The associated modal stresses and displacements are given in
the Appendix.

Corrections to the leading-order solution are determined by carrying on the analysis
to the ¢ order. The ¢-order solution is governed by the CST equations with non-
homogeneous terms given by

S ) = (f’n (6;//, +£1 ) oS Aitx sin Ay cos(w,Ty — ;). (92)
1
- r Flpr T ~ o~
oy = f 5, T/ |cosrixsin Ay Cos(w;Ty — ;). (93)
1
s .
faxan b /”P + [, ) sin mixsin Ay cos(w, T, — ). (94)

wheref'l l.fll.,ﬂl,f} l.f'z,,_f;l are given in the Appendix.
The &*-order solution can be determined by letting

u, = U, cosmxsin iy cos(w,t, —y,), (95)
v, =V, sinmixcos iy cos(w; 1y — ). (96)
wy = W, sinmxsin Ay cos(w, 1, — ;). (97)

Substituting (95)—(97) and (92)-(94) into (60)—(62) gives

ky 1,0} k- ki 4ml, o ‘ U, 1
k.- kv — 1,00} kv +al,, o LV
kys4+ml @) ko 4al @F Ky~ Low? — (7t + 7)1, 07 ’ WJ

/n(l)aw +fiu(1)

/:1(1)(:’%4-;:1(]) . (98)
o,

) “p
(&

I
A

[ (1) +ritf), + L (D) +mfy (D) +afa, (D)

Y21

Equation (98) is solvable if and only if the solvability condition (79) is satisfied. The
dependence of y; upon 1, can then be determined as

W= — AT AT T ) (99)
where
URH (4 Ve (1) = W L) +mf (1) +af (1)]
T URT (D VR (D= WL (D +ritf (1) s, (D]
and 1, represents integration functions of the scales .. t.. . . . and so on.

With (99) and the relation 1, = &°r, = h/R1,,. Ehe time functions of all field variables
are now expressed in terms of cos [(w + 24/ R)ty—r]. Therefore the natural frequencies at
the &*-order level have been modified to
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h
Ot i (1=1.2.3), (100)

Substituting (99) into (98), we obtain

ki, —1,,0F ks /‘:,7,4—/7"11”(1),2 | U, 1
/‘:l: E::—Iu)w,: lgll—}_ﬁllla)l: vV
kivAml @ ko +al 0F K= Low! — (i + i), 0! \W]J
=20+ ) 1
o — Ao (D42 (1) . (101)
\—/:,[_i;l<1>+rfzf”(1)+ﬁ_isl<1>1+[f;](1)+rﬁf.1(1)+ﬁfgl(nﬂ

from which U, V|, W, can be uniquely determined by a simple solution of the algebraic
equations along with the normalization conditions (90).

Once U,. V,, W, are obtained, determination of the &>-order corrections of the modal
stresses and displacements is straightforward. The solution procedure can be continued to
higher levels in a similar way.

7. COMPARISON OF RESULTS

Orthotropic laminated plates

The present analysis is applicable to laminated plates simply by letting 1/R, = /Ry =
in the formulation. For comparison, the free vibration problem of the simply supported
three-ply orthotropic laminated plates considered in Srinivas and Rao (1970) is computed.
In the computations, the ratios of ¢/, are taken to be the same for each layer. The data are

a0, = 0233190, ¢p5.¢, = 0010776, ¢a5/c, = 0.543103,
Ca3.¢1, = 0.098276,  c¢i1:¢q = 0530172, ¢y /¢, = 0.266810,
Ccssicyy, = 0.159914, ¢ icyy = 0.262931.

The material of top and bottom layers of the laminate is identical. The geometry
parameters are @, = dy a, 2h = 10and i, :h,:h; = 0.1:0.8:0.1. The asymptotic solutions
are compared with the elasticity solutions (Srinivas and Rao, 1970), the FSDT solutions
(Whitney and Pagano, 1970) and the classical laminated plate solutions (CPT). Table 1
shows the dimensionless fundamental frequency Q (Q = (uv/2ph,/(c”)2) for five different
ratios of (¢,,},/(¢,,)- which indicates the ratio of material anisotropy between the layers.
The convergence of the present solution in the case of (¢,,),/(¢;,), =1 1s more rapid
than (¢,,),/{¢,;)>- = 15. The asymptotic analysis yields results in close agreement with the
elasticity solution. In the cases of a small difference in layer properties (for example,
(¢1 )/ (e))> = 1, 2), the results after two steps are quite acceptable. When a large difference
in the layer properties is involved (for example. (¢, ,),/(¢;,), = 15), it is necessary to carry
out the analysis to higher levels to obtain accurate results. The FSDT results vary with
different assumed values of the shear correction factor k. In the present analysis the
correction factor is not required.

Cvlindrical and spherical laminated shells

The cylindrical shell and the spherical shell are special cases of doubly curved shells in
which 1/R, = 0 and R, = Ry, respectively. The dynamic responses of these type of shells
composed of orthotropic layers with [0 ;90 ] construction are computed. The material
properties are given as £, = 25F,. E; = F-. G| =G, = 0.5E,, G5; = 0.2E,. vi» = 0.25,
vy = 0.03, v, = 0.4, The dimensionless frequency Q is defined as Q = wa,\/p/E,. Com-
parisons among the asymptotic solution. the approximate elasticity solution based on a
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Table 1. Fundamental frequencies (Q) of orthotropic homogeneous plates (Q = wa,./ p/T)

Srinivas-Rao

(1970) Whitney-Pagano (1970) FSDT

Present study

(Cr) (Crds Elasticity sol. i1 k=273 k=56 CPT

g’ 0.049262
& 0.047304

1 o 0.047427 0.047419 0.047698 0.046971 0.047403  0.049666
& 0.047418
& 0.060092

- & 0.056774 . . <

2 o 0.057063 0.057041 0.057753 0.056685 0.057318  0.060584
P 0.057035
g 0.084640
- 0.075960 . <

S >

5 o 0.077356 0.077148 0.080364 0.078465 0.079587  0.085333
gt 0.077111
g 0.114391
& 0.093569

10 & 0.099507 0.098104 0.107696 0.104777 0.106498  0.115328
& 0.097660
e 0.137864
¢ 0.101795
15 e 0.116559 0.112034 0.129283 0.125574 0.127758  0.138994

& 0.109975

discrete-layer approach (Bhimaraddi. 1991) and various solutions based on displacement
models (Bhimaraddi, 1984 ; Leissa and Qatu. 1991) are presented in Tables 2 and 3. The
&%-order solution agrees well with the CST solution in the case of thin shells. In the cases of
moderately thick shells the CST solution begins to deteriorate. The g-order solution
converges in the case of thin shells (2h/a, = 0.05). the ¢*-order solution in the case of
moderately thick shells (24/a, = 0.1). and the £*-order solution in the case of thick shells
(2h/a, = 0.15). Heterogeneity effects of the transverse deformation become significant for
thick shells. The number of sublayers needed to be taken in the approximate elasticity
solution (Bhimaraddi. 1991) is estimated to be 6. 10 and 16 in the cases of 24/a, = 0.05,0.1
and 0.15. respectively.

Doubly curved laminated shells. Numerical results on doubly curved laminated shells
available for comparison purpose can hardly be found. The present solution may serve
as a benchmark in assessing the applicability of various two-dimensional shell theories.
In the computations the layer material properties are taken to be E, = 25F,, E, = F,,
G =G, =0.5E,, Gy; =02E,, vi» = v = vo, = 0.25. The asymptotic solution has been
computed to the ¢ order. The results of [0 /90°] laminated shells are shown in Table 4.
Convergence is found to be fast. In fact. the solution for laminates with R,/a, = 1. Ryja, =5
and a, = ag is convergent at & order for the thin shells (2h/a, = 0.05), at ¢* order for the
moderately thick shells (2h:a, = 0.1}, and at ¢® order for the thick shells (2h/a, = 0.15). The
modal displacement and stress distributions through the thickness direction at various
levels for laminates with 2hja, = 0.1 are shown in Figs 2-6. Indeed rapid convergent
interlaminar stresses corresponding to the modal displacements are obtained without tre-
ating the system layer by layer. Table 5 contains the results of ten-layer symmetric and anti-
symmetric shells ([0 /90 /0 /90 0], and [0 /90 ];). Table 6 presents the fundamental and
higher frequencies for various [0 /90 ] laminated shells with 24/a, = 0.05. Both of the tables
reveal the convergent solutions are obtained with fast speed.

8. CONCLUSIONS

By means of the method of multiple time scales an asymptotic theory is developed for
the dynamic analysis of the doubly curved laminated shells. The asymptotic theory is based
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Table 2. Fundamental frequencies (Q) of [0°/907] cylindrical shells (Q = wa,./p/E>)

Bhimaraddi Bhimaraddi Bhimaraddi Leissa-Qatu
(1991) (1984) (1984) (1991)
2hja, Rya, Presentstudy  Elasticity sol. HSDT FSDT(k = n°/12) CST

=

0.80556
*0.79235
0.79305
0.79307

0.50233
0.49307
0.49332
0.49331

0.48838
- 0.47923
0.47949
0.47948

0 1.14432
1.06117
4 1.06901
1.06875

0.96953
0.89914
0.90659
0.90573

0.96120
0.89067
0.89829
0.89740

154666
£ 130110
0.15 L 134880
& 134070

1.42657
1.20437
1.25336
1.24210

1.41810
1.19613
1.24558
1.23413

o,

0.05 1 0.78683 0.79993 0.79798 0.80580

M o
> e

0.05 5 0.49167 0.49402 0.49091 0.50216

m o m ;m
N S W 3

=)

0.05 10 0.47859 0.47997 0.47677 0.48827

m Mmoo,
o w1

™,

0.10 1 1.04085 1.09189 1.07475 1.14313

™ ;™
> o

0.10 5 0.90200 0.90953 0.88840 0.96870

™ ;MM
N

0.10 10 0.89564 0.90150 0.88026 0.96074

™ oM mom
N e Y

1.29099 1.38174 1.33274 1.54124

0.15 5 1.23849 1.25551 1.20020 1.42464

M m Mm ,
- N S

0.15 10 1.23374 1.24875 1.19342 1.41709

M m Mm ™
=N




Dynamic response of laminated shells

3833

Table 3. Fundamental frequencies () of [0 /90°] spherical shells (Q = wa,/p/E>)

2h/a,

0.05

0.05

0.05

0.10

0.10

0.10

0.15

0.15

0.15

Rﬂ//aﬂ

Present study  Elasticity sol.

Bhimaraddi
(1991)

™ ot e
>R T e

1.32988
1.30937
1.31073
1.31072

0.55246
0.54221
0.54250
0.54249

0.50149
0.49193
0.49220
0.49219

1.52339
1.42927
1.44079
1.43995

0.99032
0.91785
0.92564
0.92473

0.96519
0.89383
0.90157
0.90066

1.78806
1.54523
1.59683
1.58762

1.43115
1.20829
1.25737
1.24612

1.41638
1.19447
1.24377
1.23240

1.29835

0.54039

0.49127

1.39974

0.92065

0.89912

1.51936

1.23249

Bhimaraddi

(1984)

HSDT

1.32595

0.54500

0.49341

1.49075

0.93361

0.90679

1.68141

1.26797

1.25034

Bhimaraddi
(1984)

FSDT (k = n%/12)

1.32483

0.54219

0.49031

1.48008

0.91338

0.88584

1.64797

1.21434

1.19559

Leissa-Qatu

(1991)

CST

1.33000

0.55247

0.50149

1.52391

0.99034

0.96519

1.78940

1.43120

1.41639
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Table 4. Fundamental frequencies (Q) of [07/90°] doubly curved shells (Q = wa,/p/E>)

Present study

2hia, R.ia, Rylay g & gt &
1 1 1.3299 1.3098 1.3111 1.3111
1 5 0.8967 0.8723 0.8735 0.8735
1 10 0.8413 0.8160 0.8173 0.8173
1 20 0.8139 0.7881 0.7895 0.7894
0.05
—1 1 0.4446 0.3961 0.3962 0.3963
—1 5 0.7016 0.6853 0.6861 0.6861
—1 10 0.7528 0.7383 0.7390 0.7390
—1 20 0.7790 0.7651 0.7659 0.7659
1 1 1.5234 1.4306 1.4415 1.4409
| S 1.1722 1.0717 1.0823 1.0826
| 10 1.1299 1.0271 1.0379 1.0383
| 20 1.1093 1.0052 1.0159 1.0164
0.10
—1 1 0.9053 0.7638 0.7711 0.7729
—1 S 1.0751 0.9846 0.9932 0.9928
—1 10 1.1089 1.0218 1.0305 1.0299
—1 20 1.1264 1.0408 1.0494 1.0488
1 1 1.7881 1.5469 1.5977 1.5886
1 5 1.5031 1.2516 1.3062 1.2958
I 10 1.4688 1.2138 1.2691 1.2586
1 20 1.4520 1.1950 1.2506 1.2401
0.15
—1 1 1.3752 1.0405 1.0947 1.1033
—1 5 1.5016 1.2413 1.2943 1.2847
—1 10 1.5237 1.2694 1.3221 1.3118
—1 20 1.5351 1.2834 1.3360 1.3255

-1.0 ] ] | ] ] )
04 0.6 0.8 1.0

u,(0,0,/2,z)/u,(0,a,/2,2),,,

Fig. 2. The distribution of the modal displacement through the thickness of the [0-/90°] doubly
curved shell.
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Fig. 3. The distribution of the modal membrane stress through the thickness of the [0°/90"] doubly
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Fig. 4. The distribution of the modal transverse shear stress through the thickness of the [0°/90 ]
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Table 5. Fundamental frequencies (Q) of [0 /90°]s and [0 ‘90 /0 /90 /0], doubly curved shells (2 = wa,\/p,«’Ez)

Present study

Laminates 2hia, R,ia, Ryiay & & g* g®

1 i 1.4324 1.3798 1.3859 1.3856
1 3 1.0568 1.0012 1.0073 1.0068
1 10 1.0103 0.9527 0.9590 0.9585
1 20 0.9874 0.9287 0.9350 0.9346

0.05
—1 i 0.6845 0.5744 0.5820 0.5823
—1 5 0.8855 0.8212 0.8278 0.8274
-1 10 0.9269 0.8662 0.8726 0.8721
—1 20 0.9483 0.8893 0.8955 0.8951

{090 s

1 1 1.8558 1.5172 1.6403 1.5987
| 5 1.6140 1.2517 1.3814 1.3335
1 10 1.5841 1.2163 1.3474 1.2992
1 20 1.5695 1.1985 1.3304 1.2822

0.10
—1 | 1.3718 0.9030 1.0541 1.0179
—1 N 1.5219 1.1300 1.2683 1.2191
—1 10 1.5474 1.1635 1.3001 1.2505
—1 20 1.5606 1.1804 1.3161 1.2665
] i 1.4357 1.3813 1.3878 1.3874
1 5 1.0638 1.0015 1.0085 1.0080
1 10 1.0178 0.9530 0.9603 0.9598
1 20 0.9952 0.9291 0.9364 0.9359

0.05
—1 i 0.6887 0.5752 0.5835 0.5834
—1 5 0.8885 0.8139 0.8217 0.8212
—1 10 0.9297 0.8588 0.8665 0.8659
—1 20 0.9511 0.8819 0.8895 0.8889

[0°/90 0790 0 ]

1 1 1.8680 1.5168 1.6489 1.6020
1 5 1.6360 1.2444 1.3890 1.3342
1 10 1.6074 1.2091 1.3553 1.3001
1 20 1.5933 1.1915 1.3386 1.2832

0.10
—1 1 1.3721 0.8930 1.0517 1.0035
—1 s 1.5262 1.1062 1.2570 1.2013
—1 10 1.5523 1.1397 1.2891 1.2334
—1 20 1.5658 1.1568 1.3055 1.2498
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Table 6. Natural frequencies (Q) of [07/90] doubly curved shells
(Q = wa:\/’/P/’/Ez)

Present study

R,a, Ryja, (m, n) & & e £

(1. 1) 1.3299 1.3098 1.3111 1.3111
(1,2) 2.0168 1.9395 1.9444 1.9442
(1.3) 3.3721 3.0513  3.1100  3.0980
(2,1 1.9986 1.9117 1.9227 1.9214
1 1 (2.2) 22899 21322 2.1488  2.1470
(2.3) 34806  3.0706  3.1436  3.1294
(3.1) 33248 29529 30424  3.0203
(3.2) 34662  3.0000 3.1026  3.0777
(3.3) 4.3949 37177  3.8654  3.8319

(11y 0.8967  0.8723  0.8735  0.8735

(1.2) 1.8267 1.7556  1.7613 1.7608
(1,3 3.2599 29454 30086  2.9945
(2.D 1.4144 1.2967 1.3082 1.3070
1 5 (2.2) 2.0296 1.8672 1.8849 1.8829
(2.3) 3.3304 29160 29957 29787
(3.1 28188 23837 24747 24538
(3.2) 3.2278 27505 2.8507  2.8276
(3.3) 42392 35577 37087  3.6739
(1.1) 0.8413 08160 0.8173 08173
(1.2) 1.8021 1.7304 1.7363 1.7357
(1.3) 3.2448 29292 29932 29788
(2. 1.3679 1.2479 1.2592 1.2581
1 10 (2.2) 2.0023 1.8383 1.8562 1.8542
(2.3) 33123 28955 29762 2.9589
(3.1 2.7900  2.3534 24437 24232
(3.2) 3.2069 27292 28288  2.8059
(3.3) 42221 3.5390  3.6905  3.6555
(L. 0.8139  0.7881 0.7894  0.7894
(1.2) 1.7897 1.7176 1.7236 1.7231
(1.3) 32372 29208 29852 29708
2.1 1.3482 1.2272 1.2385 1.2374
1 20 (2.2) 1.9891 1.8243 1.8423 1.8402

(2.3) 33033 2.8852 2.9664  2.9489
(3.1 27792 2.3424 24324 24120
(3.2) 31973 27194 28187  2.7960
(3.3) 42138 3.5298  3.6816  3.6465

on the three-dimensional elasticity theory without making static and kinematic assumptions
a priori. The leading-order equations for the asymptotic analysis are the CST equations.
The higher-order equations are identical to the leading-order equations except for non-
homogeneous terms that may produce secular terms in the asymptotic solution. Solvability
conditions corresponding to the higher-order problems are derived to eliminate the secular
terms in a simple and systematic way. Application of the present theory to the laminated
shells reveals that the asymptotic solution is convergent to the elasticity solution available
in the literature at ¢* order for the thin shells (24/a, = 0.05), at ¢* order for the moderately
thick shells (24/a, = 0.1), and at &° order for the thick shells (24/a, = 0.15).
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APPENDIX
The ¢*-order solution (k = 0.1,2...) for the displacements and stresses in the illustrative problem are given
by

Uy, = Uy, €OS LY SINAY CcOs{wT, — ). (A1)
U = Uy, SinAx cos Ay cos(wty — ). (A2)
W, = Wy, Sinmx sin Avcos(wt, — ). (A3)
T iy = Gy SIN ALY SINAY COS(WT — ). (Ad)
G, = Gy, sinmxsin Ay cos(wt, —¥). (AS)
Oty = Gy SIN AR SINAY COS(WTy — ). (A6)
Ty = Ty, COSALY SIN AV COS(wTy — W), (A7)
T = o, SINAX COS AV COS(WT, — ), (A8)
Tk = Taky COS Y COS AV COS(rTy — W), (A9)

where. at the ¢’-order level.

B = Ugpnn, — 20 W g

" — ~ A
Fior = Voimm — AW,

to) s

oW
W, = W

Oimnis

N Q~|1"71 Q]:’i , Qn] Q~12
Gy = =" Uspsn— = Voom T |75 + = W ot -

E X

L (R Oaal Qi  On
Gy = = = Votwn = 7 Vot 1 : + - W oy

I i
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G0 = —m + = |, — A el L W

o JL| I <R0/1 R, Ugy—HN R, + Ros Ty + R, + R.R, + R, (o)

g .. 2~
+WT (o) + Hliz0) — P2 @ ”’10):|d'l-

The expressions of f; I 0 2 1+ a1, f31 and the revelant functions for the ¢*-order corrections are

f‘;l=J 2p, wikg, dn. (A10)

-1

f‘g.=f 2p i, dn. (AlD)
-1

j.xl :J (201‘1”;'10)_’7!)}11_ﬁj‘m)d']s (A12)
-1

Fu@) = J‘: [(m.?] 2L + ﬁ‘g66v1>(ﬁlx +m(0 +0ee) P21 _’ﬁ(% 1”‘7‘11 + %2>$31
i xfa v
1 1

- R— Ty-0) —ME, ]}'Bgz(()) —szll;l ! ] dn— (Ri + F)fo:(op (A13)

1 . 1 1y .
- RTﬂ:un — 37580 —wa'¢’2|:|d’7‘ <R_ + RT)-"-'T.:(O)» (Al14)

mn\ any -
_(RAT’)T\:(O)_(E)T;:w)_ﬂzwzﬁb]l}d'?, (A15)
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R, 0 o2
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P A ISER [CE AV T Car \
¢ () = l[) [( - )%oﬁ'( T )L(o; (*-_,le‘ + V”Rr)”to):ldﬂ- (A18)

At the e2-order level.

dy, (A16)

5
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‘ ta
=
3
+
< I
—
[EE—

g, = U||mn)_:’ﬁW1(mn)+q;||» (A19)
Ty = Vim 7:ﬁW|(mn; + (1;24 . (A20)

Wy = W1¢mm+<l;31~ (A21)
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